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ABSTRACT 

Viewed in the crossed channel, the 43 Mandelstam diagrams for 

the Reggeon-particle cut represent repeated interaction between two of 

the three exchanged particles. A much larger class of Feynman diagrams 

is obtained by allowing all three exchanged particles to participate in the 

interaction, as required by Bose statistics. It is found that, in the limit 

of high energies, all diagrams of the same order in this larger class 

contribute comparably. In particular, the contributions from the Mandelstam 

and non-Mandelstam diagrams are of the same order of magnitude. This 

larger class of diagrams is summed in terms of an integral equation. It 

is found from this integral equation that if the momentum transfer is not 

too large then the leading singularity in the angular momentum plane is a 

pole. As the momentum transfer increases this pole eventually disappears 

into a cut. These considerations are generalized, in a non-trivial way, 

to the case of the Reggeon-Reggeon cut. The signature factor plays a 

most important role, and some of the contributing diagrams show unexpected 

high-energy behavior. The profound effect of these additional diagrams on 

the program of Reggeon calculus is discussed. 
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I. INTRODUCTION 

In 1963, Mandelstami invented his famous diagrams, shown in 

Fig. 1, that give the Reggeon-particle cut in b3 theory. In the 

ensuing decade, many authors 
2-12 

have studied the properties of Regge 

cuts from various points of view. In particular, on the basis of the 

Mandelstam diagrams, Gribov and collaborators 6,9,11 set forth their 

“Reggeon calculus ” in the mid sixties. In recent years, there has been 

a revival in the interest in Reggeon calculus. 
13-20 

Let us look at the Mandelstam diagrams of Fig. 1 from the crossed, 

or t, channel. In this channel, we see three particles, two of which 

interact repeatedly with each other, while the third one participates 

only at the two ends. We recall, however, that in $3 theory all the 

particles are the same. Thus the idea of emphasizing the Mandelstam 

diagrams, with its choice of interaction mainly between two of the three 

particles, seems inconsistent with the concept of identical particles. 

This point can be investigated systematically. Let us consider a 

case where particle 1 interacts with both particle 2 and particle 3, as 

shown in Fig. 2(a). It is necessary to cross two of the lines there to 

avoid the pitfall of the AFS diagrams. 
21 

Since the diagram of Fig. 2(a) 

is of the tenth order, the important question is this: As s + m with 

fixed t , are the contributions from the diagrams of Fig. l(b) and 

Fig. 2(a) of comparable magnitude? We shall see in Sec. 2 below that 



-4- FERMILAB-Pub-74/8&THY 

the answer to this question is yes. 

That Gribov in his Reggeon calculus does not deal with these non- 

Mandelstam diagrams together with the Mandelstam diagrams means 

that exchange forces are not treated on the same footing as direct forces. 

For relativistic scattering processes, exchange forces are in general 

not small, and hence the validity of Reggeon calculus can be questioned. 

This is discussed in Sec. 4. 

Let us now go into some of the more technical details. The 

contributions from both diagram I(b) and diagram 2(a) are of the order 

gi’s-‘(ln s)~ as S - m with fixed t . Similarly, the contributions from 

diagrams l(c), 2(b), 2(c). and 2(d) are each of the order of g i2sm2(1n s)~. 

However, all these contributions are cancelled by the corresponding 

crossed diagrams obtained by exchanging s and u ; this happens for both 

the Mandelstam diagrams and the non-Mandelstam diagrams. Thus the 

resulting contributions are of the orders of g “s-‘(ln s)~ and gi2sw2(ln s)~ 

respectively. If only the Mandelstams diagrams are kept, the resulting 

series of leading terms is essentially a geometric series and the summation 

can be carried out easily. When the additional diagrams are also retained, 

the series is much more complicated. In fact, the summation of this 

series cannot be carried out explicitly, and the structure in the complex 

angular-momentum plane must be studied through a non-Fredholm integral 

equation. For forward scattering t = 0 , there is, in addition to a branch 

cut, also at least one pole to the right of the branch cut. When -t increases, 
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the pole moves closer to the branch cut, and at some finite value of 

/ t / this pole disappears into the branch cut. The discontinuity across 

the branch cut is of course quite different from the contributions from 

the Mandelstam diagrams alone. In view of the presence of the pole, we 

find the term “Reggeon-particle cut” somewhat misleading; the diagrams 

are in fact characterized by the presence of the three-particle intermediate 

states. The properties of such diagrams are discussed in Sec. II. 

In Sec.111, we deal with the corresponding diagrams w~ith four- 

particle intermediate states. These diagrams include in particular the 

usual double Mandelstam diagrams that give the Reggeon-Reggeon cut. 

The physics is essentially the same but the details are more complicated. 

In particular, the signature factors play a role of paramount importance. 

This fact makes the analysis much more delicate. For this reason, we 

present in great detail the necessary calculations. In order not to lose 

sight of the chain of reasoning, which is really quite elementary. we 

relegate such details to a series of Appendices. 

II. THREE-PARTICLE INTERMEDIATE STATES 

In this section we consider all Feynman diagrams which contribute 

to the Reggeon-particle cut in leading order. Let Pi and P2 be the 
. , 

momentum of the incoming particles and Pi and P2 be the momentum 

of the outgoing particles, then 

p +P =P’+P’ 
12 12’ 
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Define the usual Mandelstam variables 

s = (P1’P2)2 

t = (Pi-P;)2 

(2. 2a) 

(2.2b) 

and 

u = (Pi-P;)2 (2. 2c) 

C with the metric (+ ---) 
1 

. We are interested in the limit s + m with t 

fixed and nonpositive. Since t is spacelike we may write 

, 
Pi - P1 = (0,0,X) (2.3) 

where a’ is a two-dimensional vector. 

The plan of this section is as follows: In subsection A we will recall 

a few well-known properties of Mandelstam diagrams. Next, in subsection 

B we discuss the tenth order diagram of Fig. 2(a). We then, in subsection 

C, discuss the role of signature and, in subsection D, consider the twelfth 

order diagrams of Fig. 2(b), (c) and (d). In subsection E we describe the 

general class of diagrams which contributes to the Reggeon-particle cut 

and in subsection F we derive an integral equation which sums the 

contributing diagrams. Finally, in subsection G we demonstrate the 

existence of the three-particle Regge pole. 

A. Mandelstam Diagrams 

The leading term in the s - m expansion of the amplitude for the 

Mandelstam diagram in 2(n+i) order perturbation theory (nz3) is well 

known 122 to be 



-7- FERMILAB-Pub-74/88-THY 

AM 
m+2) = -2Tis-2g4 &ln%f’nn: (X) + O(s-21nn-2s) 

where 

fqyj) = d2i; 
M ( 

1 ,“-l(~‘ag) 
2(2iT)3 iT2+m2 

and 

1 

(2 -c)2+m2 

(2.4) 

(2. 5) 

(2.6) 

The function f:)(z) may be symbolically represented by the diagram in 

transverse momentum space of Fig. 3(a). 

B. 10th Order Non-Mandelstam Diagram 

The lowest order in which there are important diagrams other than 

Mandelstamts is tenth where we have the diagrams of Fig. 

diagram is analyzed in Appendix B and we find 

Jfl 
(10) = -s -2 10 1 

g 2vigln s fi 3 +O)(Ti) + O(s-21n2s) 

2(a). This 

(2. 7) 

where 

+m2 -I 1 [ (X-‘;2-i;3f+m2 -I 1 [ (X-Z3-C4)2+m2 I -I . (2.8) 

This amplitude is represented by the transverse diagram of Fig. 3(b). The 

amplitude (2.7) is indeed of the same order of magnitude as the Mandelstam 
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amplitude (2.4) with n = 3. 

C. Signature 

Of course, even in 8th order the Mandelstam diagram of Fig. l(a) 

is not the only diagram which contributes as it is always possible to 

interchange the s and u channels to obtain the “crossed” diagram of 

Fig. 4(a). Similarly for the tenth order diagram of the previous subsection 

we have the crossed diagram of Fig. 4(b). For both of these crossed 

diagrams it is easily verified that the leading term of the s - m expansion 

is precisely the negative of the leading term (2.4) and (2.7) of the uncrossed 

diagrams. Therefore, this leading order expansion for the individual 

diagrams is not accurate enough to study the sum of all the contributing 

diagrams. 

However, it is not difficult to refine the asymptotic expansion to 

compute the leading term of the sum of the diagram and the crossed 

diagram. As shown in Appendix B the expansion (2.7) of A:” is more 

precisely given as 

Alo) = -sb2gio2rri $- [In s - ril 3$(1o)(X) 

+ Ass21n2s + O(sm21n s) (2.7a) 

where A is purely imaginary. Moreover, the expansion of the amplitude 

for the crossed diagramMy:) is 
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J7(10’ = s-2gt02rril ln3s$10) - 
IC 3! 1 (4 

- Ass21n2s + O(sW21n s) . (2.9) 

Therefore A cancels out when we sum JPqlo’ and-&yco) and we obtain 

&:“’ +d:,“’ = -2n2sT2g1’ +ln’s$t’)(Z) + O(sm21n s) . (2.10) 

Similarly for the 2(n+2) order Mandelstam diagram we have 

(2n+4) +-&2n+4) = -2,r2s-2g4 llg-~y)t~) + O(s-21nn- zs)* 
MC (n-l)! (2.11) 

D. 12th Order Non-Mandelstam Diagrams 

In twelfth order we consider the three diagrams 22 
of Fig. Z(b),(c), 

(d) and the three crossed diagrams of Fig. 4(c),(d), (e). These diagrams 

are explicitly expanded in Appendices C, D and E and we find 

Jy2’ +&:c2’ = -282s-2g12 $- ln3s y2)(;i) + O(s-21n2s) 

J(12’ $#&;c2’ =Jf(i2’ 4::) + O(s-21n2s) 

and 

(2.12) 

(2.13) 

Jy2’ Jyc2’ = -2n2sm2g12 + ln3sT(zi2’(;i) + O(se21n2s) (2.14) 

where 

(cont. ) 
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and 

[ (Z-Zf-Z2)2+m2 1 -1 c (X-i;,-Z3)‘+m2 1 -1 [ (X-Z3-ir4)2+m2 1 -1 
[ (Z-ir,-iC5)2+m2 1 -1 

I d”‘;, d”‘;, d”‘;, 
- - - 
2(2rr)3 2(2V)3 2(2ir)3 

ir 24 
2 

c3 (i;2+m2) -1 

7-274 
[ 
(E-Cl -iCj2+m2 

-1 

II 

(i;lZ+m2)-l (i;z+m2)-’ (T;g+m’) -i [(Z-‘;; -i;2)2+m2 1 
-1 

[ 

-1 
(;i-i;2-~c3)2+m2 . 1 

(2.15) 

(2.16) 

The transverse diagrams for $12) and $,;‘) are given in Fig. 3(c) and 

(d). Again, these expansions are of the same magnitude as the corresponding 

expansion (2. II) for the 12th order Mandelstam diagram. 

E. The Class of Contributing Diagrams 

We now wish to generalize the results of the 10th and 12th order 

perturbation theory calculations to arbitrary order. The result is that 

there is a class of diagrams (which includes the Mandelstam diagrams) 

that contributes to the leading order. Several examples are given in 

Fig. 5. The class is described as follows: 

1. From the upper horizontal line draw three vertical lines 

(labeled 1, 2, and 3 in Fig. 5) 
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2. Line 1 (the left vertical line) and 1 ine 3 (the right vertical 1 ine) 

are then immediately connected by a horizontal line. 

3. An arbitrary number of horizontal lines may then be drawn in 

an arbitrary order between 1 and 2, 1 and 3, and 2 and 3. 

4. The three vertical lines must be connected to the lower horizontal 

line so that the right and the left vertical lines are connected by a horizontal 

line. This step can always be carried out in two ways and the two diagrams 

so constructed transform into each other under s++ u exchange. 

It is clear that the Mandelstam diagrams are the subclass of diagrams 

obtained by only allowing horizontal lines between particles 1 and 3. It is 

also clear that the 10th and 12th order non-Mandelstam diagrams of Fig. 2 

are included in this class of diagrams. 

The contribution of one of these diagrams plus its s ++ u crossed 

diagram in 2(n+l) order perturbation theory is 

-2r2s-2g2n+2 I (n-2)! In 
n-2 

s X (integral from the transverse diagram) 

(2.17) 

where the transverse diagram is obtained by shrinking all horizontal 

lines . 

F. Integral Equation 

We now study the s + m behavior of the sum of the class of diagrams 

of subsection E. For this purpose it is advantageous to pass from s to 

the conjugate angular momentum variable j by making the Mellin transform 
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.&j) = ds S-j-lAS) . 

If for d(s) in (2.18) we use 

- sS21nns 1 
n! 

l<s 

0 O<s<l 

we have 

1 
I 

mds s-3-j n 
In s = (2+j) 

-n-l 
nl 1 

(2.19) 

Therefore, using (2.20) we find that in the vicinity of j = -2 the Mellin 

transform of (2.17) is 

-2n g 2 2n+2(j+2)-n+l 
x (integral from the transverse diagram) . (2.21) 

We may now write an integral equation for A(j) valid near j = -2. 

Consider a general transverse diagram and cut all three lines just 

before they join the bottom line (Fig. 6). With each line there is 

associated a transverse propagator. Therefore consider the function 

obtained by omitting the three propagators cut by the dotted line (and the 

associated integrations). In 2n+2 order perturbation theory call this 

function f(n) + + + (k*, k2, k3) where ~1+~2+~3 = 2 is the momentum transfer 

(2. 3). From inspection of Fig. 6 we see that, for given 2, f @’ 

jf3) must of the form 

f’“‘(;l,;2,‘;3) = f!m(Q + fF)(l$ + fi”)(Q * (2. 22) 
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Furthermore define, for i = 1,2,3 

03 

fit+) = f!“‘(r;, 1 1 

and 

f(i;, = f,(lq + f,(z) + f,(z) . 

(2. 23) 

(2.24) 

Then, in terms of the variable 

&=j+Z (2.25) 

the amplitude .,&j) for the sum of all diagrams of our class is related 

to f(r;, by 

,,,#j) = g2cm1 cy(z-iJ . (2. 26) 

Furthermore, since our class of diagrams begins with the eighth order 

Mandelstam diagram we find from (2.11) that 

and 

f(3’(1; ) = ff3)(i; ) = 0 
1 1 3 3 

fY)(C2) = -ZTr2g2&(X-i;,) . 

(2.27a) 

(2.27b) 

The functions fp)(ki) satisfy the recursion relation, for n> 3, f(n+l’(i;) = &x-i; 1 
I I 
,(n+l)(?;, 
2 

f(n+l)cI;) 
3 

F(n’(2j 1 

P’(i;) 2 

P)(Zj 3 

(cont. ) 



-14- FERMILAB-Pub-74/88-THY 

-1 2 
+5 g 

1 

(Z-iP-Gf+m2 

0 1 1 

1. 0 1 

1 1 0 

fyi?) 1 
P’(G) 
2 

hn’(i;,) 
3 

(2. 28) 

Therefore, summing over n and using the initial condition (2. 27) we 

obtain the desired equation for fi(c) 

I f&i; r 

+r, -1 2 d%’ 1 1 g J - 
2(21r) 

3+ 2 
k ’ +m2 (-6-k-i;‘)2+,2 

I 0 1 1 1 0 1 0 1 1 m 
f,(h 

f,(h 

f,(P) (2. 29) 

from which, by adding together the three equations, we obtain the integral 

equation for f(C) 

I-~-1&i-i;) 
22-t-+ 

f(C) = -2rr g < a(A-k) 

1 

(“a-i;-ca)2+m2 
f(i;,) (2.30) 



-15- FERMILAB-Pub-74/88-THY 

G. Three-Particle Regge Pole 

We conclude this section by studying the singularities of -&j). 

Consider first the equation obtained from ( 2.30) by omitting the 

1 ast term. This is the equation we would obtain if we considered only 

the Mandelstam diagram. The equation is easily solved and, calling 

MM(j) th e resulting amplitude we find 

d;(j) = -2n2g4tN2 

J 

a2(7i-r;, 

l-~-la(LC) , (2.31) 

which clearly has a branch point at 

j = -2 + n(O) . (2. 32) 

This branch cut is known in the literature as the Reggeon-particle cut. 
- 

We now demonstrate that, in fact, the full amplitude&j) has a pole 

to the right of this cut when x is not too large. 
- 

The amplitude&j) will have a pole if f(c) has a pole for some 

value of 5 = a,(Z). At this three-particle Regge pole, the inhomogeneous 

term in (2. 30) is to be neglected and thus the homogeneous equation 

C 
l-a3 -1(bz&q f,(C) 

= 2,;f (X,g2 J 2t 
+ 

1 

l6rr 
_ 2i 
k’ +m2 (“n-LiP,2+m2 

has a nontrivial solution f,($ . Define 

q-&c) = g-216n3a(~-i;) 

f,(P) (2.33) 

(2.34) 
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and 

A= g-216n3cv3(i$ . (2.35) 

Then multiply (2. 33) by A to obtain an equation with no coupling constant 

[A-Z(a’-z’] f,(Z) 

1 1 
i;,2+,2 - - -. f(G) . 

(A-k-k )2+m2 ’ 

Symmetrize (2. 36) by defining 

h(c) = (c2+m2)-$ fo(c) 

(2. 36) 

(2.37) 

so that 

[A-&i-i;] h(r;) 

= 2 -2 d2g’- (c2+m2)-% (k’ 2 -f 
fm ) 

h(l;‘) 
-e-P+ 

(A-k-k ‘)2+m2 
(2. 38) 

This integral equation may be obtained by a variational principle. Therefore 

we find that the largest eigenvalue A max obeys 

A 
max 

= sup h2(1;) e(a-i;, 
h 

+2 2 -1 d2~d2~(~2+m2)-~(~+m ) 2 h(c) h(i;‘) 

( &k-kc)2+m2 

/jd2~h2$j]-‘/ --* 

1 
To demonstrate that 

I 

A > Z(O) = mm 
-2 

max 

(2. 39) 

(2.40) 
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it suffices to use as a trial function in (2.39) 

1 if ) k’- a’[ < a 

0 otherwise . 

Then we have the estimate 

JJ d2i,* d2cS (k’;2+m2)-i (p+m ) 
2-* ----. h(k) h(k ’ 

+-- 2 
(A-k-k’) +m2 

2 (I a’1 +a)2+m2 
C, 

-I 
3 c 

(/ zj,+2a)2+m2]-i(na2)2 . 

Moreover, if we use the inequality valid for x > -1 

1 L=- 1-x+x2-x3 
l+x- 

(2.41) 

(2. 42) 

( 2.43) 

we find that 

I d2; ?I(;;) (Y(z-;) 

J d2i; d2r;a 
J 1 1 = 

1 kka p2+m2 i;‘2+,24.> +i;2 

2 2 -2 
z~lam i- & a2m-2- & a?m-4- $ a6m-6 . (2.44) 

Therefore, using (2.42) and (2.44) in (2. 39) we find 

A 
2 

i7a _- 
max 

-a(o) > rnzx 

I 
E la’/ +a)5m$@, +2a)2+m2j i2L4 

I 2 -6 1 4 -8 

I -Earn -7zam * (2.45) 

The expression on the right is positive for sufficiently small values c$” a if 
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X2m -2 <Z&-2 . (2.46) 
- 

Hence it follows that if a’ satisfies (2.46) then the amplitude &j) has a 

three particle Regge pole which lies to the right of the Mandelstam cut. 

III. FOUR-PARTICLE INTERMEDIATE STATES 

We now turn our attention to the case of four-particle intermediate 

states in the t channel. Our results are qualitatively the same as those 

of Sec. II. In particular we show that: 

1. The class of diagrams which contributes to the leading order as 

s -+ m is much larger than the class of double Mandelstam diagrams 

illustrated in Fig. 7. 

2. When the momentum transfer 2 is zero, the singularity of the 

amplitude in the j plane which is farthest to the right is not the “Reggeon- 

Reggeon” cut at 

j = -3 + 2@(O) , (3.1’ 

because there is a cut due to the convolution of the 3 particle Reggeon of Sec. 

IIG with an additional elementary particle which lies to the right of (3. 1). 

This case of “Reggeon-Reggeon” scattering has been extensively 

discussed by previous authors! Our treatment differs from these 

previous treatments in two respects: 

1. Many diagrams previously thought to be negligible are 

demonstrated to be important. 
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2. The effects of signature are properly taken into account. These 

signature effects are particularly important for the diagrams which 

previous authors thought were small. 

A. Double Mandelstam Diagrams 

The diagrams analogous to the Mandelstam diagrams for the exchange 

of a Regge pole and a particle are the double Mandelstam diagrams of Fig. 

7. These diagrams have been analyzed by Cicuta and Sugar 23 
and by 

Hasslacher and Sinclair. 
24 

They find for the general diagram of Fig. 7 

with m rungs in the outer ladder and n rungs in the inner ladder that, 

for m 2 1 and n 2 0 

2(m+n+4) = 
ANI 1 

-q, 
I 

ng42rii s -31nn+m+Zs 

1 

1 1 
(n+l)! (m+l)! 

f 
m+l, n+l(‘) 

+ 2 (n:Z)! Z m,n+2(A) -------If - 

+ (x-1:3)! (m!*)! fm-l,n+3 (5 
t 

-3 n+m+l 
+ O(s In s) > 

where for m # 0 

I 2+ 
f m Ja, = + cr “(i&Y”(Tri-i;, , 

1677 

(3.2) 

(3.3a) 

(3. 3b) f o n 6 = 0 , 
> 
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and 

hn 
= + ifm=n+Z 

1 otherwise . (3.4) 

We note that the method of specifying diagrams given by Fig. 7 is not 

unique and that the diagram specified by (m, n) and by (n+2, m-2) are 

the same. Therefore, when (3.2) is summed over m and n one must 

divide by two to avoid double counting. 

Along with the diagrams of Fig. 7(a) we must also consider the three 

additional diagrams obtained by twisting the legs of the ladders as shown 

in Figs. 7(b),(c), and (d). These four diagrams are each of the order 

g 
Z(m+n+4)s- 31nn+m+2 

s. However, when added together their sum is only of 

the order g 2 (m+n+4) s -31nm+n 
s. This loss of two powers of In s is expected on 

the basis of considerations of the signature of each constituent ladder. Calling 

the four separate amplitudes of Fig. 7 - 1.2, 3 and 4 respectively we find 23,24 

4 

c 
Jzm+n+4) 

1 
= -k, ng42(ai)3s-31nn+ms 

i =I 

I I I -- 
n! m! f m+l, n+l(‘) 

+ ’ (n-El)! (mll)! fm, n+2(') 

1 
+&(GFq f m-l, n+3(‘) 

I 

+ O(s-31nn+m-1 s) . (3.5) 
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B. Non-Mandelstam Diagrams 

The lowest order in which there are non-Mandelstam diagrams which 

are comparable to the double Mandelstam diagrams of Fig. 7 is twelfth. 

These lowest order diagrams are given in Fig. 8 and are obtained by 

adding a vertical line to the 10th order non-Mandelstam diagrams of 

Fig. 2(a) in all possible ways plus the crossed diagrams. We note that 

the diagrams of Fig. 8(b) and (c) are their own crossed diagrmas. 

We could go on systematically and calculate these four 12th order 

diagrams. However, since the calculations are somewhat tedious we 

will proceed directly to a diagram (Fig. 9) of particular interest which 

has been discussed incorrectly in the literature. 
8 

This 20th order 

diagram is surely one which should be considered in an attempt to study the 

interaction of two Reggeons. The calculation of the s + m behavior of 

this diagram is somewhat subtle. We carry it out in Appendix F and find 

that it behaves as 

20 -3 
-ig s 

7 
In s f(Z) . (3.6) 

Moreover, f(z) does not have a natural representation in terms of an - 

amplitude in transverse momentum space. 

By itself the diagram of Fig. 9 is one power of In s smaller than 

the 20th order double Mandelstam diagrams [(3. 2) with m+n = 6] . 

However, (3.6) is one power of In s larger than the sum (3. 5) of all four 

double Mandelstam diagrams which must be added together to obtain the 
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correct signature factors. This clearly indicates that in addition to the 

diagram of Fig. 9 we must consider other diagrams as well. 

We obtain further insight into the diagram of Fig. 9 by straightening 

out the top and bottom lines as shown in Fig. 10. [There are, of course, 

3 other possible ways to straighten out these lines and each way must, in 

general be discussed separately. See Appendix F.] In this form it is 

clear that we should consider the signature partner diagram obtained from 

Fig. 10 by 

a) transposing at the upper end the two interior vertical lines, 

b) transposing at the lower end the two interior vertical lines, 

c) transposing the two interior lines at both the top and the bottom. 

These diagrams are shown in Figs. 11, 12, and 13 [See Appendix G]. 

Furthermore, there are the additional diagrams obtained from these by 

s - u crossing. 

These diagrams are treated in Appendices F and G. It is found that 

each of these non-Mandelstam diagrams is of order g 
20 -31n7s 

s . We also 

find that the diagrams obtained by transposing the upper or the lower interior 

pair of lines are both purely imaginary in leading order. However, if both 

the upper and the lower ends are transposed there is also a real part to 

the amplitude. When we sum these four amplitudes together the imaginary 

parts cancel and the result (G10) is of the form 

g20s-31n7s T(X) (3.7) 

-+ 
where f(A) is real and is representable as an amplitude in transverse - 
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momentum space. (Fig. 14). Now when we add the four s- u crossed 

diagrams we lose a power of In s and gain a factor of i so the final 

result is proportional to 

-i g 20-3 6 --a 
s lnsf(A) , (3.8) 

This has exactly the same power of In s as does the sum (3. 5) of the 

double Mandelstam diagrams of 20th order. 

In general, the class of contributing diagrams is described as 

follows : 

1. Draw 4 vertical lines from the upper horizontal line. 

2. Connect the outer two lines by a horizontal line. 

3. Draw any number of horizontal lines between lines (1, Z), (1, 3), 

(1,4), (2, 3), (2, 4) and (3,4) in any order whatsoever. 

4. Join the 4 vertical lines to the bottom horizontal line in such a 

fashion that the outer two lines are connected by a horizontal line. 

As in the previous example, when we add together the amplitudes 

of the diagram and its signature partners we obtain a result which is 

proportional to the amplitude of the transverse diagram obtained by 

contracting all horizontal lines. 

The sign of all contributions is the same. This is a reflection 

of the fact that 6 3 is a theory of attractive bosons. 

C. Integral Equation 

The sum of all these contributions is given by an integral equation 
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analogous to that of Sec. 2F. In particular, consider the amplitude 

obtained by cutting a transverse diagram at the bottom. Call this 

amplitude f(gl, c2, c3, c4) with 

+-+-t* + 
kl+k2+k3 +k4 = A (3.9) 

we have, for given x , 

fGl,~2>~3,~4J = f,@Q + f13Gl’I;3) + f14ci;,>~4) 

(3. IO) 

where 

fe x (I; $ ,) = fe p ,(r;,, I Cl ) P ’ . 

Then for the Mellin transform&j) we have, with 

5 = j+3 , 

d&j) = lkt&,54g4L-1 g s0 fr.,a ‘$ &) 

1 1 
4 k, +x-n’ 2,” ,+m2 

(3.11) 

(3.12) 

-+-e-P 
(Y ( &k-k’), (3.13) 

where 

f(iT, P, = I~1 < ,14fz2 ‘1 (CP) ’ zi 

(n) Furthermore, calling fp p, (cl ,‘cl,) the amplitude in 2(n+4) order 

perturbation theory we find 
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f(l) = p = f(l) = f(l) = $1’ = 0 
12 13 14 24 34 

and 

fyi(C2, C3) =-2n3ii’~2rx(Z-iC2-iC3) . 

Then the f:) p satisfy the recursion relation 

f(n+I) - -c 
i2 (kk9 

,(n+l) - -, 
13 (k,k ’ 

,(n+i) - -, 
i4 kk ’ 

,b+i) - -. 
23 (kk ) 

ty ci;, z9 

,(n+l) - - 
.34 kk3 

q &(;i~~p) 

fCn)(i; C-J 
23 ’ 

fqr; 2, 24 ’ 

1 

(A-k-k -r;“)2t,2 - - -* 

000001 

000010 

000100 

001000 

010000 

100000 

-(n) -cc, - -- 
fi2(k > &k-k' $") 

f(n) -,. - - -, 
23 (k 

, A-k-k -cSO) 

fyi;-, x-j&r;* -I;*- ) 
24 

,A-k-k -I;**) - - -. 

(cont. ) 

(3.15a) 

(3. 15b) 
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‘5 
-1 2 1 1 

g J d’i?’ - 3 - 26rr k” ‘+m 2 (h i;- p - gs* )2t,2 

011110 -,(n)(r; ’ i;,,, 
12 

+ f(n)(3,plm 
12 

101101 fb)(T; p ) 
13, 

+ f(n)(p ’ p) 
13 

110011 f(n)(l; p, 
14, 

+ f(n)(p,p.) 
14 

110011 f~;(i;J?, +t$i?,i?) 

- 101101 f,,(k,k (n) -,, ’ + fz4(k (n) -, > I;,,, 

Summing (3.16) on n from 1 to OD and using the initial cond 

obtain 

(3.16) 

tion (3.15) we 

0 

0 

c I 

0 
&@(&I;-p) = 

-2rr3i~-ig2~(-d-~-9) 

0 

0 

-i2d2p 1 J 1 fL g - 
i6rr 3 p2+,2 &g-r;* -r;** ++m2 

000001 

000010 

000100 

001000 

010000 

100000 

(Cont.) 
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t 

011110 
101101 

110011 

110011 

1OilOf 

011110 (3.17) 

We may now add together all six of these equations and obtain the desired 

equation for f(k, k’) of (3. 14) 

f&P) 1-&@i-Z-P) 
c 1 

= -2r3i &-‘gza(~-i;-~) 

1 ,A-k-k -i?‘, - --e 
tm2 &T;-i;* -p )2+,2 1 

,iP) + f(iT,P) . 
It 

(3. 18) 

It is instructive to consider what this equation becomes if we consider 

summing only the Mandelstam graphs. Then the term containing f(c,p) 

+f(p, p) is omitted and, 
-a* 

calling the resulting function fM(k, k’)we see that 

fM(k, k’) obeys an equation that depends on g and p only through 

r;tP=;; . (3.l9) 

Therefore, calling 

(3.20) 

we find from (3. 18)that 
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TM(;) c-p&i-;; C 1 = -2n3i ~-‘g2cz(Z-$) 

+ f,(~-~)pa(z-s) 

To solve this write the companion equation with <-x-< 

1 = -2rr3i ~-tg2@(~ 

+ f,G,s-‘a(~ . 

Eliminating f,(a’-5 between these equations, we get 

-12 -- 
fMG’ = 

-2r3i 5 g a(A-q’ 

1-p 
[ 3 

. 
cY(z;-&Y(;) 

(3.21) 

(3.22) 

(3. 23) 

Therefore using this in (3. 13) we obtain the known result for the sum of the 

double Mandelstam diagram 

Aj) = - (3. 24) 

We conclude by discussing thesingularities o&fj) . When a’ = 0 we 

see from (3. 24) that dM(j) has a branch point at 

< = Zcu(0) . (3. 25) 

This branch point is expected to remain in the full amplitude &j). However, 

included in./@ j) are all diagrams which convolve a single elementary particle 

with the sum of all three-line graphs discussed in Sec. II. We have seen 

in Sec. IIG that these three-line graphs lead to a three-particle Regge 

pole at a3(X) . Therefore, the convolution of this three-particle pole with 

an elementary particle gives a fixed cut at 



-29- FERMILAB-Pub-74/88-THY 

s = (u3m . (3. 26) 

We do not know a,(O) exactly; however, a more sophisticated variational 

calculation than that of Sec. II-G shows that 

a3(0’ > Za(0) . (3. 27) 

Therefore, the “Reggeon-Reggeon” cut is not the right most branch cut 

in the j-plane. 

IV. COMPARISON WITH GRIBOV’S REGGEON CALCULUS 

We have now seen explicitly that in ,$3 theory Mandelstam’s 

diagrams are not nearly enough to study the s - m behavior of the 

scattering amplitude with either 3 or 4 particle intermediate states. In 

the case of three-particle intermediate states, if only Mandelstam’s 

diagrams are taken into account, the amplitude behaves as the convolution 

of a Reggeon and an elementary particle. In fact, due to the non-Mandelstam 

diagrams the discontinuity across the cut starting at j = -Z+cu(O) is 

different from that given by the Reggeon-particle convulation and, in 

addition, there is at least one pole that lies to the right of -2+0(O) if 2 

is not too large. Moreover, in the case of four-particle intermediate 

states, the branch point is not at -3+2a(z/Z) but is at a larger value. In 

this case, the discontinuity across the branch cut is of course also 

different from that of the simple convolution of two Regge poles obtained 

by summing only the double Mandelstam diagrams. 
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One may argue that the three-particle Regge pole that we have 

found depends on the detailed dynamics of 4’ theory and is thus not 

always present. In as much as two-particle bound states do not imply 

the existence of three-particle bound states, this statement is surely 

true. On the other hand, the discontinuity across the cut receives 

comparable contributions from both Mandelstam and non-Mandelstam 

diagrams Since this discontinuity plays an important role in Gribov’s 

Reggeon calculus, the presence of the non-Mandelstam diagrams must 

effect profoundly the program of Fieggeon calculus. 

We discuss here five possible points of view on the relation between 

these non-Mandelstam diagrams and Reggeon calculus for hadrons. Each 

of these five points of view leads to a line of future research. 

A. One may argue that $3 theory has no relevance to hadron 

physics. In some sense this is surely correct. However, since Reggeon 

calculus deals with only a small number of particles in the t channel, 

the usual objection to the o3 theory about the instability of a system of 

attractive bosons against collapse is perhaps not a serious source of 

difficulty. Furthermore, Gribov’s original inspiration for his Reggeon 

calculus is from the Reggeon-particle cut of the b3 Mandelstam diagrams. 

Indeed, it does not seem unfair to say that Gribov’s work is an attempt to 

generalize the phenomena seen in the b3 Mandelstam diagrams to hadron 

physics. 
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It is not appealing to assert that the Reggeon calculus may be 

applied only to hadron physics, but cannot be verified in any honest field 

theory. If one is seriously dissatisfied with $3 theory, systematic study 

of some other field theory is essential. The most natural candidate is 

perhaps quantum electrodynamics. 

B. Instead of summing the contributions of Mandelstam and non- 

Mandelstam diagrams directly by writing down an integral equation, one 

may carry out a partial sum over ladder diagrams first. After this 

partial summation, the amplitude then takes on a form which looks 

formally like the repeated interaction of a Reggeon and a particle (or of 

two Reggeons). The major problem with this approach is that, since the 

non-Mandelstam diagrams are just as important as the Mandelstam 

diagrams, the magnitude of the Reggeon-particle (or Reggeon-Reggeon) 

vertex is not small even in the weak-coupling limit (g6 small), but is 

always of order one. Therefore the Reggeon-particle and Reggeon-Reggeon 

scattering may not be ignored. Instead, some non-perturbative procedure 

need be devised to take such scattering into account, at least approximately. 

C. One can attempt to be more phenological and say that we should 

now multiply the Mandelstam discontinuity formula by some new function 

in order to get the correct discontinuity. The hope may be realized that, 

at least when no additional poles appear, this new function is qualitatively 

simple. To pursue this approach, two lines of attack can be tried. First, 

on the basis of the diagrams studied in this paper, we may study this 
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ratio of discontinuities, perhaps even numerically. If the result is 

simple and appealing, it ma.y be tried on cases of more physical interest. 

Secondly, it is very interesting to look for somewhat different versions 

of I$3 theory where perhaps no three-particle Regge pole is present. If 

such cases can be found, it is then possible to learn about the effect of the 

three-particle Regge pole on this ratio of discontinuities. In particular, 

can the sign of this ratio change? 

D. One may force the amplitude into the form of the convolution 

of a Reggeon and a particle (or of two Reggeons) at the expense of using 

much more complicated vertex functions for the coupling of the external 

particles to the Reggeon-particle pair or two Reggeons. These vertex 

functions, called N by Gribov, are so far considered to be due to very 

simple diagrams and hence more or less structureless. If they are 

instead required to take care of the non-Mandelstam diagrams, then they 

must be computed from the sum of an infinite set of five-point and six- 

point diagrams involving repeated interactions. Understanding such 

diagrams is in any case highly desirable. 

E. One may accept the non-Mandelstam diagrams on a completely 

equal footing with the Mandelstam diagrams, and repeat all the development 

of Reggeon calculus on this basis. Instead of an explicit formula for the 

discontinuity across a cut, we have now a suitable set of integral equations. 

The absence of an explicit formula makes the development more difficult, 

but it would be most desirable to find out how much of the existing Reggeon 
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calculus can be carried through in this fashion. 
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APPENDIX A 

The following integral appears repeatedly in the Mellin transform 

of both Mandelstam and non-Mandelstam amplitudes 

where Re p > 1 , and xI, x 2s yl, and y2 are all fixed positive numbers. 

We want to evaluate I approximately for small a . 

Integration over y gives 

I = -(p-1)-l - (-xyi+a+ie)-P+i 1 C-42) 

-x 
1 

Since the corresponding integrations over (-m, -x1) and (x2,m) are both 

bounded as a- 0 , we get from (AZ) 

I 

m 

I = -(p-Q-l dx(x+ie) + o(i). L43) 
-m 

Here the integral of the first term vanishes by closing the contour in the 

upper half-plane, while the second term gives 

I = -2ai(p-l)-‘(a+ie) -p+t 
+ O(1) (A4) 

asa+O. The larger Re p is, the smaller the relative error becomes. 
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APPENDIX B 

In this appendix we study the behavior, as s + m with fixed t , of 

the 10th order Feynman diagram of Fig. Z(a). This is the lowest order 

non-Mandelstam diagram that we need to consider. This diagram is 

redrawn in Fig. 15 in a more symmetrical fashion. Our asymptotic 

evaluation will be carried out by means of Feynman parameters. 

The amplitude for this diagram is 

-4 io &to’= -4!(16,‘) g 9;” 
W) 

where 1 

J? 
(lo) = d(@) A36 (&Y-i) 

2 5 . (BZ) 

0 ( sDs+uDu+tDt -m Dm+ie) 

In (BZ), (Y stands symbolically for all the Feynman parameters, including 

all the cy,cu’,p,p’, and y of Fig. 15. As s+m with fixed t , u is 

approximately -s ; hence the coefficient of s is Ds-Du . 

In (BZ), A, Ds, Du, Dt and D 
m are functions of all the ~9s. They 

can be described in a. mxnber of ways. For example, A is given by the 

sum of all the cuts that leave the diagram connected, where D s1 Du, and 

Dt are respectively the sum of all the cuts in the s , u , and t channels. 25 

We find it convenient to use instead the determinantal form originally 

given by Chisolm. 
26 

In fact, for some of the more complicated diagrams 

to be treated in later appendices, we have not been able to carry through 

the analysis in any other way. 
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The determinants are in fact those from circuit analysis. We begin 

by choosing independent loop currents. For the diagram of Fig. 15, there 

are four such loops, indicated by 1,2, 3 and 4 in the figure. If any loop 

current in a line is in the direction opposite to the arrow for the line, then 

we add a minus sign in front of the number for the loop current. Treating 

the Feynman parameters as resistances, we can write down from circuit 

analysis the 4 X 4 matrix where the diagonal element A.. is the sum of all 

the Feynman parameters in the jth loop, while the off-diagonal element 

A. 
Jk 

is the sum of all the Feynman parameters common to the jth and kth 

loops (with a minus sign if the loop currents are in opposite directions. 

The determinant of this matrix gives A . 

To obtain Ds-D u, we add an extra row and an extra column (here 

called 5) to the above 4 x 4 matrix. The 55 element is zero; the j5 

element is the sum of the Feynman parameters in the jth loop which 

are also in the top line of the diagram; and the 5j element is the 

corresponding sum using the bottom line of the diagram. Note that the 

arrows in the top and bottom lines are both from left to right. Ds-D 
u 

is given by the determinant of this 5 x 5 matrix: 

Ds-Du 

(cont. ) 
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0 0 @ c3 0 

=(TJ ff4+e2+U3+P1+P (y3 0 (Y +a 
2 1 2 

@ Q 
1 

+P- 
1 

a,+~;~,,+, -Y 
wY; ai 

0 

@ : 

-v cy CY'+p' 
;+a3+p;+pj+y 1 1 0 

@; ,;+p, ,;+a;+cY;+p;+p; 1 0 

0 O 0 "i cYO+cYO I 2 0 

(B3) 

We shall not write down Dt and Dm at this stage because they are 

not needed in their full form. We merely note that they are not zero even 

if we put all the cz and a’ to zero. 

As a first step, we subtract column 5 from column 2, and subtract 

row 5 from row 4. Thus 

Ds - Du 

y3+P1+P2 a 1 fP 1 Ly3 0 (2 1 +a 2 

Pi 
. 

ai+a 3+Pi+P3+Y -Y a; al 

O3 -v cu;+a3+(3 ;+p ;+y a;+p 
1 

0 

0 
a; % ct ;+I3 ;+P '2 0 

0 0 a; a;+, 2 0 (B4) 

We proceed to evaluate this determinant explicitly 

Ds-DU = -Y(~,P,-~,P,)(~Y;P~-Q~P;) + (Q~P~-~~P~)~;-‘J~ 

+ (a’P’-a’P’)a A + LY rr’A 
12 21 32 333’ 635) 
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where 

Al = (cz3+p;)~; + (@;+,,+P;+P;+y)Q; , u36) 

A2 = (“;+(~,)cY, + (al+a;+pl+p3+y)‘Y2 > (B7) 

and A3 = “p;(P3+P;) - ~2~;y + cp;b;+p;+pj) 

+a;a2(al+P1+P3) . 638) 

A more useful form of (B5) is 

Ds-DU = -Y((Y~~~-(Y~P~-~~A~/Y)(~~;~~-~;P;-~~;A~/Y) + a3a;B/y , 

(B9) 

where 

B = A1A2 + yA3 

= 
[ 

c b,+P ,)(ay;+P3) + Y(P,+P;) 
I 

aI@; 

+ 
[ 

(a;fa3+P;+P;)(LYl+o;+P1fp3) +Y(cul+ru;+a3+a.j+P1+P;+p3+P;) Q2Q> 1 
+ 1 (a;+P3)(cr;+(U3+P;+P;+Y) + Yb;+P;+P;) 1 ala; 
+ (cu3+P;)(LY1+(Y;+pl+P3+Y) + Y(@,+P,+P,) @;02 . C 1 WO) 

Since Ds-D 
U 

is the coefficient of s in the denominator of (BZ), the 

most important contribution to (10) 
A 

comes from the region where Ds-D 
U 

is small. From (B9), Ds-DU = 0 if 

ai =LY 2=o > (Bit) 

or cy; 2 
=cu’=o, 0312) 

or 
“?2 - a2Pl 3 2 -LYA I~=cY 3 =o , (B13) 
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or 

OI‘ 

or 

“1P2 - a2Pt - a3A2/y = LU’ = 0 , 
3 (Bi4) 

ay;P; -a ‘zp; - cx;A1/y = a3 = 0 , (B45) 

a;p; -u;p; - cx;A1/y = ru’ = o . 3 (B16) 

The leading contribution comes from, roughly speaking, the region where 

(Bii) - (Bib) are simultaneously satisfied. Such cases are conveniently 

treated by the method of Mellin transform. 27 

Define 

yy’)(L) = ;~;“‘s’-L& J . 
Since 

0 
(As+~)-~s’-~d~ = r(2-(~~-~()r-2+~) A-2+LB-nt2-5 , 6318) 

(Bi7) 

we get from (B2) that m 
j7i0)(~) = F(2-5)P(3+5) 

1 4! J d{cu[A3 d (X:cu-1) ( Ds-Du+ie) 
-2+< 

(Dtie)-3-G , 

0 
(Bl9) 

where D = (4m2-t)Du + tDt - m2Dm . U32’3) 

(10) In order to get the asymptotic behavior off 1 for large s , we need the 

behavior ofy[:‘)(i) for small 5 . 

In view of (Bi1) and (B12), let 

(2l = PSI , @2 = PZ2 , 

and Ly; = p’6y; , 
o2 ‘=p’Iu; ’ Wi) 
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such that - _ culta = 5; + a; = 1 (B22) 

This kind of change of variable is called scaling. Since p and p are 

small, we can carry out these two integrations to get, for small 5 , 

J 
1 c2 
0 

da,da2da;da~da3da;dp,dP2d~3d~~d~~d~~dy 

6 (1-crl-cT2)6 (1-LF;-q6(1-(y3-cy=p 3 1-P2-P,-P;-P;-P;-y)A:D13 

III -y(‘~p2-a2@j-u3 [(Q;+P3)i41 + (a;+f31+P3+y)i%2]/y[ 

{“;p;-cy’p’ - a;[(a3+pp; + (cr3+P;+P;+Y)~;]/Y} 
2 1 

+a3q DQ-3+P;HQ;+p3) + Y(P3+p;)]Tr1G; 

+ c(cu3+P;+P;)(~;+Pl+P3) + y(CU3+,aj+pl+p;+p3+pj)]~2”;. 

+ C(Q;+P3)b3+P;+P;fY) + y(p;+p;)]cFli+; 

+ [(~,+P;)(~;+P1+P3+Y) + y(PlfP3)]~~~2j/y + ie -2+5 , 
51 

(B23) 

where Al = A 
I cy =cy Ecu’qy’ZO 

1 2 1 2 

and D 
1 

=D 

I (y =ry =(y;=@‘=o . 
1 2 2 (~24) 

If we identify the quantities in the first two braces of the last factor 

in (B23) with the x and y of Appendix A, i.e., 

x = cT1p2 - z2p1 - a3[(Q;+P3)~1 + (~;+P1+P3+YF2]IY 
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and -I . Y= a1P2 - cy’zp; - a j [(a 3+p ;‘“; + b,+P ;+P j+y)G;]/y , (B25) 

then we get from (A4) that 1 

jy5) *_, --rrl~ ; -2 

0 
da3d+FldP2dP3dP ;dP ;dP ;dv 

6(I-Q3-a3 1 2 3 ’ -p -p -p -p; -p ‘2-p ;-y)A:(Dl+it)‘3y-1 

111 “34;Y-1( [(“3+P;)(“;+P3) + Y(p3+p;)]iiloii.;o 

+ [(cu3+P;+P;)(a;+PI+P3) + Y(~3+~;+P1+P;+P3+P;)1~20~yo 

+ [(a;+P3k3+P;+P;+Y) f Y(P;+P;)]~lo~;o 

+ [(a3+P;)(QY;+Pl+P3+Y) f y(P1+p3)]Z;oZ20\ +iJ-‘+’ , 6326) 

where ?? 10~~20, 5’ 1o and Zzo are obtained from (B22) and (B25) with 

x=y=o. 

-(lo) It is now clear that the leading behavior off, (5) for 5 small 

isfrom a *a’ -0. 3 3 Thus 

I 

1 

0 
dPldP2dP3dP ;dP’zdP ;dv 

6 (1-Pl-P2-P3-P;-p~-p;-y) AiD,’ 

j CP,P >fv(P,+P ;)lP,P; + [(P ;‘P ;)(P1+P3) + v(P,+P ;+P,+P yP2P; 
f CP,(P;+P;+v) + Y(P;+P;)IPIP’, + [P;(P,+P,+Y) + Y(P,+P3)]P;P21-1 

(B27) 



where 

and 

Explicitly 

no = 

and 

-42- FERMILAB-Pub-74/88-THY 

*0 
= Al 

I a =a;=0 
3 

DO 
=D 

1 
I (y zLy’=O 3 3 (B28) 

pi+p2 @I 0 0 

PI P1+P3+Y -Y 0 

0 -Y 
p” +p ’ +y PI . 

1 3 

0 0 6; P;+P; 

= the quantity in the brace of (B27) , W9) 

Do = tjP,P,P,(P;P; +P;P;+P;P;) +P’P’P’@ P +P P +P P ) 12312 23 31 

f Y [P,P j(P,+P,)(P ;+P ‘2’ + PlP2P3(P ;v ;’ +I3 ;I3 ;I3 j(P,+P,) + PIP,@ ;P gr 
- m2A 0 

The desired asymptotic behavior 

(B30) 

then follows from (B27) and 

(B17) as 

2 -3 
6 (I-PI-P,-P,-P ;-P ;-P;-Y) AODO . 0331) 

When rewritten in terms of momentum integrals, (B31) with (B1) gives (2. 7). 
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The derivation of (B31) is somewhat tedious although straightforward. 

Let us add the following remarks to clarify the situation. 

a. The leading contribution comes from the pinch singularity 

x=y=o, (~32) 

as given by (B25), together with the end-point singularity 

(y =,y =(y =a’=n’=a;=o . 
1 2 3 1 2 (B33) 

b. Even for this relatively simple case, the formulas involved are 

quite lengthy. Since the corresponding formulas for more complicated 

diagrams are not manageable, we develop in Appendix C a better formalism 

where, instead of direct expansion, properties of determinants are used. 

Since the machinery for this formalism is fairly complicated, we have 

avoided using it here. 

c. Without additional work, what can we say about terms of the 

order s-‘(ln s)’ injr’) ? In terms of Mellin transform, we have to 

deal with terms of order 5 -3 . They can come from, for example, the 

expansion of the factor P(2-<)P(3+5) , or from the region of large p , or 

large p’ , or large o3 . All these contributions have the property that 

the coefficient of 6 
-3 -4 

, when divided by the coefficient of 5 , is real. 

There is only one way to get a ratio that is not real, namely from the last 

factor of (B19) 

(D+ie)-3-s . 

We see from (B30) that, for physical values of momentum transfers t < 0 
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and hence Do< 0 . We therefore get a factor e 
-inf 

. Therefore (B31) 

can be improved to be 

(10) 1 A - -xris -2 [ln s-ir)3pfio’ + constant (In s)’ t O(ln s) 1 , (B34) 

where 
A 

(i’) is the integral over p p’ 9 I and y that appears in (B31), and 

the constant is purely real. Eq. (2. 7a) follows from (B34). 

d. What does the present consideration say about the crossed 

(10’ diagram shown in Fig. 4(b)? Let us define a correspondingflc , then 

6, 1 
(10) =~‘10’ _ 

s-u 

Therefore the Mellin transforms are related by 

6336) 

D -D * - (Ds-Du) 
s u 

We see from (Bi9) that this change of sign has two effects: a cancellation 

of the factor e -iv6 
discussed in the last paragraph, and a complex 

conjugation to restore the signs of ie . Therefore, by (B34) 

(10’ 1 
AC - z ni s + constant (In s)’ + O(ln s) 

I 
. (B37) 

Since the constants in (B34) and (B37) are the same, we get finally 

(10’ y, + JZ’,‘,“’ * - q$ ~2s-2(ln s)y:O) . (B38) 
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APPENDIX C 

In this appendix we study the behavior, again for s + cc with fixed 

t , of the 12th order Feynman diagram of Fig. Z(b). The amplitude for 

this diagram is 

where (12) 
-01 = d(m) J 

1 
A46 (.a-1) 

(C2) 

0 (sDs+uDu+tDt-m2Dmtit)h 

Fig. Z(b) is redrawn as Fig. 16, where the Feynman parameters and the 

choice of loop currents are also shown. 

Since there are five loop currents, we need to write down a 6 x 6 

determinant for Ds-D : 
U 

Ds-D 
U 

ff +P 
1 2 

@I+Q+P1+P3+P4 @+P 0 
4 Ly al 

-0 3 a+P 4 a3tQ;+Q+P4+P;ty a+p ’ -ru’ 0 4 3 

0 CY 43; ,;+,+p ;‘pj+lu4 a’+@’ 1 * 0 

0 0 -a’ 3 (Y 1 ‘+p’ 1 ay;+cY;+(Y+p;+p; 0 

0 0 0 @; (Y*+LY 0 1 2 

(C3) 

The prescription for writing down this determinant is exactly the one 

used in Appendix B. Once more we subtract the sixth row from the fifth 

= alfLY2+c%3+plfp2 @ +P 1 1 -cY 3 0 0 
o1+@2 



-46- FERMILAB-Pub-74/88-THY 

row and the sixth column from the first column to get 

Ds-DU = 

,3+P1+P2 ff 1 fP 1 -a 3 0 0 cu1+e2 

pi a1+e+P1+P3+P4 ff+p4 a 0 al 

-LY @+I3 I . ’ ’ 3 4 a3+m3+a+P4+P4+Y a+p -a 4 3 
0 

0 1y a+p ’ , . . U’+p’ 4 a;+u+P1+P3+P4 1 i 0 

0 0 -a’ , I 3 5 a+P1+Pz 0 

0 0 0 LY’fCY’ @; 1 2 0 

This is the determinant that we shall concentrate on. 

What we need is a procedure that can be generalized to deal with 

more complicated cases. For this purpose, we introduce the following 

notation: Ba . 
1 ..a ,,bi.. . bn 

means the minor obtained from the right - 

hand side of (C4) by omitting the n rows alI a2, a3,. . a and the n 
n 

columns bl, b2, b3,. . . b . Thus for example 
n 

?a = 56,45 (Y +p +p 
3 1 2 0 +P 1 1 -a 

3 Ql+(y2 

PI al+a+P1+P3+P4 o+P 4 Ly1 

-a I 
3 a+P 

4 
@3+Ly3+Ly+p4+p~+y 0 

0 Q a+@; 0 

(C5) 
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9 12,16 = a+@ 4 a3+LY;+a+p4+p;+y a+p ’ 
4 

-a’ 
3 

a cY+p ’ 
4 

@l+Q+P1+P3+P4 , ,,I al+P1 , . 

0 -lY’ 3 p; a+P ;+P 2’ 

0 0 a; (Y’ta’ 
1 2 

and 

(C6) 

2% 1256.1456 = a+P4 
. . (Y3+03 +(u+p4+p4+y . (C7) 

a a+p ’ 4 

It is also convenient to use the special notation that Q is the determinant 

with the last row and the last column omitted: 

Q =zq6 . (C8) 

Furthermore, let ~2 
al*--a ’ bl...b denote the corresponding minor 

n n 

obtained from s2 : 

n 
a 1 . ..a n>bl...bn =ql... an6,b 

1 
. ..b.b * (C9) 

We are now ready to study Ds-D 
u 

on the basis of (C4). Consider 

i = (D;DU)B 
1256,1456 -%6,45 -%2,16 ’ (CIO) 

Let us consider this i in three special cases. First, suppose we replace 

the (3,1) element (which is -‘Ye) of the determinant in (C4) by zero. Then 

DiDu = %456,2345 92 16 ’ WI) 
> 

9 56,45 = g3456,2345 %256,1456 ’ v32) 
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and hence 

6=0. (Cl31 

Secondly, suppose we replace instead the (5, 3) element (which is -a; ) by 

zero, then 

Ds-D~ = q234 1236 %6 45 ’ , 

2% = 12,16 9234, i236 9256,1456 , 

(Ci4) 

K15) 

and we again get (C13). Thirdly, suppose we replace the (4. 2) element 

(which is a) by zero, then 

Ds-D~ = -=%,,..I26 q56.345 ’ 

9 = 12,16 -%2456.13456 -%23,126 ’ 

23 = 56,45 - -%2356,12456 356 ’ > 345 

33 = 456.2345 q2456 13456 -%2356,12456 ’ , 

(C*b) 

W7) 

(C18) 

(Ci9) 

and we get (C13) once more. Since g is zero in all these three special 

cases, 6 is in general of the form 

6 = cY3a;Q6 , ((30) 

and Ds-D u = @256,1456)-@6,45 32, 16fa3aicu6’ ’ (C21) 

With (CZI), we are ready to discuss the behavior, near 5 = 0 , of 

the Mellin transform of the amplitude 

jy2)(1) = 5 mJys~-ids 

0 
(Cont. ) 
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1 

= r(2-5)r(4+5) 
5! 

d{a)A46 (zz:CU-l)(DS-DU+k) -2+5 
(Dtie) 

-4-5 
, cc=) 

0 

where D is given by (BZO) with the Du, Dt and Dm for the present 

diagram. Since Ds-Du = 0 if either LY = cy 1 2 = 0 or CZY; = ayz’ = 0 , we 

use the change of variables (B24) and (B22), and first integrate over p 

and p’ : 

I d~1d~2d~~d~2’da3da;dadpdp dp dp dp’dp’dp’dp’dy 
12341234 

0 

6 (I-cul-Z2)6 (I-cYl 2 -‘-L?‘)6(1-a3-“;-a-p -p -p -p 1 2 3 ,-B;-P;-P;-Pp’ 

A:(D,+ir)-4-5 (Ds-Du) tie -‘+’ 
1 1 (~23) 

where the subscript 1 means the following 

A, = A (C24) 
c @1=@2=al=@~=0 

D1 = D (C25) 
cy =a =cr’=cu’=o 

1 2 1 2 

and 

(C26) (Ds-Du) = lim 
1 

p+o, p.eo (PP’)-~~-DJ . 

The second step is to define 

x = lim 
p-d p-iq6,45’-%256, 1456 (C27) 

and y = lim 
p”0 P+q2 i6/9 1256,1456 ’ 

(C28) 

integrate over “I and 5’ by (A4), and then integrate over LY LY’ 1 3’ 3’ and ry: 
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fy”(c)- - -& rri t-5 d~ld~2d~3dP4dB;d~~d~;d~~dy(Pl+~2’-1(~;+~~)-1 

0 

6 (1-p -p -p -p -pa-p’-p’-p’-y) Ai(D,+k) 
12341234 (C29) 

where A0 = A 
Ly =(y =(y =a’=a’=a’=a=o 

123123 

Do = D (C30) 
aI=@ =cy =a'=a'=a'=a=o 

2 3 1 2 3 

and 
6O 

= lim 
[ 

p'o, p..+o(PP')-f "3" * (C31) 

In (C31), the superscript A means that the quantity is evaluated at 

Q1 = P,/(P,+P,’ . 

“; = P;/q+P;) , (~32) 

and 

Also note that, in writing down (C29), we have made use of the fact that 

ZB 1256,1456 
I 

>o. (C34) 

a3=(Y;=a=o 

It remains to find 6 
0 * For this purpose, some matrix manipldation 

is necessary: 

6O = cr-llim 
[ p-+0, pa-O(ppO)-i =%256,1456%5,13 + q56.145 %25, t36)lA i 

= (P,+P2)-i'B~+Ph)-' [a-'(--%256, 1456%6,36 +=??56 456 * g 126,136 
0 

= ((3 +p r1(P4+P" 
-1 -1 

1 2 1 2 [ ( 
(Y 

"35,45%2,13 -' 125,145'3,3 o 11 
= (Pl+P2)-2(P;tP,"-2[~-1(R3,4~2,3 - 112,4a3,3)] 9 cc351 

0 
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where the subscript 0 means a =(Y =(Y =a’=a’=a’=a=O . At this stage, 
123123 

we can use Jacobi’s identity for minors 28 

a. .s2 i,j k,B -“i,a”k,j =""ik,jP 

for any determinant fi , provided that i < k and j < 1 . Therefore 

?I0 = (P,+P2’-2(P;+P,“-2[ol-1n”23 34 1 
= ~~l+P2~-1~B;iP;‘-1[olP1212~5,1~45, 

0 

= (P1+P2r1(P;+q’ A, . 
This is the desired formula. 

For t 5 0 , 

Do =-m2Ao t t D 
t (y =cy ZLy =a’=a’=a’=axo 

123123 

is negative. If we define 

dp d(3 dp d@ dp’dp’dp’dp’dy 
12341234 

0 

6 (~-P,-P,-P,-P,-P;-P~-~~-~~-Y’ A; kDo’-4 , 

then 

yj12’(L) Ir _ & =i L-5e-in~~2) . 

(C36) 

(C37) 

(C38) 

(C39) 

(C40) 

This implies that 

(17.) = _ 1 1 
-fl : r nis -‘[(ln s-i7i)pji2’ + constant (In s)3 + O(ln’s) 1 , 

(C41) 
where the constant is real. 
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For the crossed diagram shown in Fig. 2(b), the corresponding 

y:c2’ is given by 

(12) = 1 1 
AC 10 z lri s -pn 4p + constant (In s)3 + O(ln2s) 1 , (c42) 

and hence 

+ O(ln2 s) . 1 (C43) 

Eq. (2. 12) follows immediately from (C43). 
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APPENDIX D 

We apply the formalism of Appendix C to the 12th order diagram 

of Fig. 2(c). The amplitude forthis diagram is 

&;2’ = 5!(<6n2)-5gi2yy2’ , 

where 

A46 (BP1) 

(sDs+uDu+tDt-m2Dm+ie)6 

W) 

(D2) 

Fig. 17 is the same as Fig. 2(c) with the Feynman parameters and loop 

currents added on. 

For this case, similar to (C4), Ds-Du is given by 

Ds-Du = 

a3+Pi+P2 @i+@i 
-Ly 

3 
0 0 (I +a 

1 2 

pi al+a+Pi+P3+P4 p4 
a 0 @1 

-a 3 
p4 a3+a;+P4+P;+Y 334’ eYj 0 

0 (Y -Pi (Y;+p; a;+a+p;+p;+pi 0 

0 0 “i p; cTj+p;+p; 0 

0 0 0 a; 
,;tcx 2 0 

(03) 

Equations (CiO)-(C21) and (C24)-(C28) of Appendix C applies here 

without any modification at all. Equations (C22) and (C23) also hold if 

3:‘) is replaced byf(i2) . However, since (C34) is not satisfied in the 

present case, (C29) is replaced by 
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1 

j(12’(&) rx _ 1 2 10 ,ric-5 dP dP dP dP d~‘d~~d~‘d~‘dy(~ltP2)-1(~;+PZ))-1 12341234 
0 

6 (1-p -p -p -6 -f3’-p’-p’+‘-y) Ai(D,+ie) 
-4-5 

12341234 (-60+it)-it’ , (D4) 

where Ao,Do, and 6 o are still given by (C30) - (C32). This minus 

sign with 6 o is neatly compensated, because (C35) holds here if the 

left-hand side is replaced by -6 o . This change in sign is due to the fact 

that the (5.3) element of (D3) is a; , while that of (C4) is -(Y’ . Therefore, 
3 

for the present diagram we get 

-60 = (p +p 1 3 )-l(p’+p’)-ln 1 2 0 (D5) 

instead of (C37). 

The similarity between the diagram under consideration and that 

treated in Appendix C goes even further. If we contract all the (Y and 

(Y’ in the diagrams of Figs. 16 and 17, the results are identical. Therefore 

both A, and Do are entirely the same for the two cases, and the right- 

hand sides of (C29) and (D4) are identical. Therefore 

and dy2) 

WI 

(D7) 
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APPENDIX E 

We next apply the formalism of Appendix C to the 12th order diagram 

of Fig. 2(d). The amplitude for this diagram is 

4”’ = 5!(16i$5g12~(312’ , (El’ 

where 

1 
942) = 

3 dlQ\ 
A46 (&-I) 

6 ’ 632) 

0 (sDs+uDu+tDt-m2Dm+it) 

Figure 2(d) has been redrawn as Fig. 18. 

For this case, similar to (C4), Ds-Du is given by 

Ds-Du = 

‘a3+P1+P2 @l+Pl -a 0 0 3 cy 
1 

+cT 
2 

P, al+@;+P1+P3+P4+Y P, -Y @; al 

-(I 3 p4 cu3+(Y+p4+p; 0 (Y 0 

0 -v a o;tcYtp;tp;ty ey;‘p; 0 

0 a; 0 Pi ffp;+fJ; 0 

0 0 0 a; (Y;+(Y. 
2 0 

(E3) 

Although it is possible to treat this determinant directly, we can 

save a great deal of writing by interchanging the second and the third 

columns. Let us add a minus sign to every element of the new third 

column to get 
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Ds-Du = 

“3+P1+P2 -a3 -1-P 1 
0 0 a1+a2 . 

PI p4 
. 

-@l-e3-P1-P3-P4-Y -Y a; @I 

-cy 
3 Q3+c44fP; +4 (Y 0 0 

0 (Y Y ,;t,tp;+p;+y a;+p; 0 

0 0 -lx’ p; 
, , 

3 @j+P1+P2 0 

0 0 0 
a; 

a*+Ly* 
1 2 0 

(E4) 

The similarity between (E4) and (C4) is now striking. In particular, the 

crucial elements at the (3, I), (4,2), and (5.3) positions are identical. 

Therefore, the entire analysis of Appendix C goes through with no 

modification. ($2) The final results for f3 , yyc2) and their sum are 

given respectively by the right-hand sides of (C41), (C42), and (C43). 

Unlike the previous case of Appendix D, both Do and A0 are 

given by different formulas in the present case than those of Appendix C. 
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APPENDIX F 

In this appendix, we generalize the method of Appendix C to deal 

with the Reggeon-Reggeon cut. This generalization is not completely 

straightforward. 

Instead of starting with the non-Mandelstam diagram of the lowest 

possible order, we prefer to treat here a case of particular interest. 

Specifically we shall find the asymptotic behavior, for large s and fixed 

t > of the contribution from the Feynman diagram of Fig. 9. This is a 20th 

order diagram, and gives the effect of Reggeon-Reggeon scattering. The 

matrix element is 

&’ = 9! (16~2)-9g201~o’ , 

where p’ = 
dlal 

LA(aY-1) 
1 (sDs+uDu+tDt-m2Dm+it) 10 * 

(Fl’ 

(5’2) 

This diagram of Fig. 9 is redrawn as Fig. 10. 

With the choice of loop currents shown Ds-Du can be expressed 

in terms of a 10X10 determinant. Analogous to (C4). after subtracting the 

tenth column from the first column and the tenth row from the ninth row, 

the result is 
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Ds-D = 
U 

‘ y4+P1+P2 Q3 -CT 
4 al+Pf 0 

0 

-0 4 

PI 

0 

0 

0 

0 

0 

0 

a3+c5+P3+P4 0 
+3 a5 

0 @4+ff6+P5+P6 P5 
-a 

6 

+3 

@5 

0 

0 

0 

0 

0 

0 

0 

- yi 

. , , l , 

a~+a(,+~~+~3+~5+~7+~~ 

p5 al+ff;+P1+P3+P5+P7+Y1 ai+P 7+Y 1 

-cY ai+P 7+YI , 
6 a5+~;+~6+~~fP7+P7+Y*+Y2 

a6 -yi -'y6-P;-Yj 

0 

0 

0 

0 

0 

0 

0 

ai 

(yi 

p; 

“i ai 
0 -cd' 5 

0 0 

0 0 

0 0 a*+a2+"3 

0 0 a3 

0 0 0 

0 0 
cul 

-0' 5 0 0 

+; aO+pO 
1 1 

0 

p5 . pYp;tp; 0 -CT' 
4 

0 

-Pj 0 a3+a5+P3+P4 * , I I (I; 0 

p, c -a' 4 0 a4"P;'P; 0 

ai 0 
(y; 

ru*ta'+c,y' 
1 2 3 

0 

(F3) 
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We encounter here the first difference between four-line diagrams 

and three-line diagrams. The right-hand side of (F3) is zero if one of the 

following four sets of conditions is satisfied: 

ai 2=cY3= 0 , =(Y (F4) 

a4 = p, = p, = 0 , (F5) 

0’ = (y’ = (y’ = 0 
123 ’ w-6) 

and a; = p; = p; = 0 . (F7) 

However, A , which appears in the numerator of (F2), also vanishes if 

(F4), and (F5) are both satisfied, or if (F6) and (F7) are both satisfied. 

(20) Therefore the leading contribution to II comes from 4 independent 

regions in the vicinity of the following points: 1. (F4) and (F6). 2. (F4) 

and (F7), 3. (F5) and (F6), and 4. (F5) and (F7) . These four regions 

need to be studied separately. For definiteness, we shall treat here only 

the first region. 

Consider the difference 

a=9 1490 1690(Ds-Du) - g90, 69 q4.10 ’ (F8) . 

where the subscript 0 is used to designate the tenth row or column. 

Similar to the treatment in Appendix C, we consider two special cases. 

First, suppose that the (2,iO) element dZO(which is equal to ‘Ye) and the 

(3,i) element d3i (which is -a4) of the determinant are both replaced by 

zero, then we have 
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Ds-Du = 9 23567890,23456789 29 14,iO ’ (F9) 

2% 90,69 =29 B 23567890,23456789 1490,169O ’ (J-0’ 

and hence 

6 =o (Fi1’ 

Similarly, when the (10.8) element do8 (which is a’) and the (9.7) element 3 

dg7 (which is -(YJ are both replaced by zero, then 

Ds-Du = 9 23 12345678,12345780 90,69 ’ O-2) 

2% 14,10 =s@ 12345678,12345780 23 1490,169O ’ (F13) 

and hence (Fi1) again. Thus 6 vanishes when d20 = d3f = 0 or do8 = 

dg7 = 0 . We can therefore expand d with respect to these four elements 

6 =a- +“6- , (Fi4) 

where 6’ is the quadratic part, which is of the form 

ie = d20dos6 1 t d20d97: 2 + d3$do8: 3 + d - 3id97d4 ’ (Fi 5) 

and i* is the cubic and quartic part, which is of the form 

6 . . = 
d20d3i(d08” 5 + d 

: 
97 6 

) + d d (d “6 + d3& + d20d3id08d97:9 
08 97 20 1 

(Fib) 

These ii can be written down explicitly by direct expansion. Let 

J@ have the same meaning as gexcept that the (2.10), (3,1), (10,8), and 

(9. 7) elements are all set equal to zero. Then 

‘1 = --%490,1690-%,80 + =%O 690’ -%40,180’ ’ 
(Fi7) 

I 
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‘2 = - =%490,1690’=%9, 70’ + g 290,690’ q49,170’ ’ (F18’ 

‘3 = q490 2 1690=%0 > 18’ - g 390,169’ %40,180’ ’ (Fi9’ 

and iT4= 9 
1490,169O 9 39, i7 ’ - 390 169’ 949 170’ ’ WO) , > 

Jacobi’s identity may be applied to each of these four g Is to give 

respectively 

;I = go o%z % 
12490,16890 ’ 0-1) 

:2 = -% 0’-%2490 16790’ ’ (F22) > > 

E3 = =%, 1’ q3490,16890’ ’ (~23) 

‘4 = -%,I’ =?3490.16790’ ’ (~24) 

In order to go further, we consider, corresponding to the pinch 

singularity, the special case where 

d 
10 = dil > d 

40 = IJ.d4i a 

d 
06 = v’dg6 > and 

d09 
= u’dg9 . 

Let BP be .!$@’ when (F25) is satisfied 

@=q 
(F25) ’ 

then q 2 = p’ 

and hence 

(F25) 



("5 -0 6 

X 0 a6 

0 0 

0 0 

0 0 

Q3+a5+P3+P4 0 -p3 @5 0 0 @3 

0 a4+a6+P 5+P6 p5 
-a 0 0 6 pff4 

"t?btyi cy 5 +a'ta 5 6 ta'+p 6 tp'+y 7 2 ty 2 a; -a; 0 
7 

. 
- yi -'y6-P;-Y, p5 9; 0 

(yi *i 'Y;+a;+p ;+p; 0 0 

0 -CT' 0 (Yg+@;+p;tp~ 0 
5 

0 0 P'(y4' a; 0 
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andhence 

-. 6 = (F25) %,0Pfd20d08=%2490 16890' p'd20d97q2490 16790' + , . 

+ pd3id08~3490,16890i + ppCd31d97~3490,16790' 

= go oP(-a3@5cqY; 

. -p’ff3CX5CX~6 

Ly +a. tp +p P5 0 
4 6 5 6 

a6 -y1 p; 

0 "i a;+cYp;+p; 

@4+@6'P5+P6 -a 
6 

0 

"6 -“6-P; 9; 

0 -01' a3+a5+P;+P4 . . . 
5 

I 
+pa4a6a;a5 a3+a5+P3+P4 +3 

0 

Lu5 @i+p7 Q,-+P; 

0 @i a4+e6+ . , P;+P, . 

(Cont.) 
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a3+a5V3V4 O5 
0 ’ 

I 
e5 (Y5+‘r5+y2 -a’-@’ 5 3 

0 -lY’ ,;+cx;tpjtp~ 
5 

(F28) 

After this rather lengthy study of the s coefficient Ds-D , we are 
U 

(20) now ready to study the asymptotic behavior of I 1 when s em with 

fixed t . It is convenient to define the Mellin transform slightly 

differently as 

instead of (B17). By (F2) 

(F29) 

1 
i(20) 1 (5’= 

F(3-C)F(7+5) 
9! 

d{a\A86 (Z:a-i)(Ds-Du+ie) 
-3t5 

(D+ie)-7-’ , (F30) 

0 

where D is still defined by (B20). As discussed after (F7), there are 

four independent regions of contribution. We shall concentrate on region 

(20) 1, and call the contribution from region 1 to I 1 and l‘(F”) respectively 

$20) 1 1 and I -yyw . 

The change of variables (B21) and (B22) is generalized to 

and 

cri = p’yl , a2 = pa2 I Q3 = pa3 , 

(Yi = p’“; , CY; = p’$ , 0; = p.cu;, 

al - +;ztzi 3 
= cy; t z; + ‘;; = 1 . (F31) 

For small 5 , we get by carrying out the p and p’ integrations 
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1 
dsrd~‘dryd~‘dpdp’dy6(1-~--~‘- X).3- Xp’-Zy) o 

6(1-~6)6(1-~a’)n~(D,+i~) 
-7-5 -3+5 

, (~32) 

where dZ = dZ1dc2d*3 , 

dcu = da4dc5da6 , W33) 

etc. Similar to (C24) and (C25), Di and A, are defined by 

Al = A 

I cy =(y za =cu’=a’3’=o 
123123 

and Di = D 
I (y =Ly z(y =a’za’=a’=o ) 

123123 W35) 

while (Ds-Du)i is defined by (C26). 

In view of (F8), we define, analogous to (C27) and (28) , 

x = lim 
,+Op-iB90,69'%490,i690 (F36) 

W34) 

and y = lim 
p”0 p=1~4,~01-%490,1690 ' W37) 

Unlike (C34), the above denominator Bi490 1690 does not have a definite 

sign. We therefore define 

A = sign of q490 169o . (F38) 

Because of (Fi4) - (F26), ii.3,cU;,cu4, and a; are all small in the important 

region of integration. Thus 6 may be replaced by a# and the integration 

over 5 1 and 5’ 1 gives 
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-2 dG3dG;dadol’dpdp’dyij (l-Co-Z&Y’-Zp-Zp’-CY) 

1%490,1690 
/ (~,+~2)-*(~;+~~)-‘~~(Dj+ir)-7i~(h~~+i~)-2’1 (F39) 

where “+A = 1 
A 

lim (pp’)-5’ I (F40) 
p-o, p”0 

and the superscript A here means (C32) without (C33). 

Equation (F28) can now be used to yield 

dc3dz;dada’d@d8’dy : (I-X:p-Xp’-ZV) 

(Pi+P2) 
-1 ,-I 6 

(P;+P2) A,@, +id-7+L / D1490 1690’1 > 

u 
A A1e3e5Z;a5 + A2(P;+P;)-*fi3a5~& 

+ A3(Pi+P2) 
-1 

a4a6qY5 + A4(p,+p2)-1(p;+p;)-lcu4rr6~~U~ 
-2+5 

(F4*) 

0 
where A D 0’ 0’ 

and D 
1490,169O 

are respectively A, D, and 

D 1490,169O 
with all cz and all a’set to be zero. In (F41), 

and 

Ai = v,(P5+P6)(P;+P;) I 

A2 = p;(p5+P6)(P;%‘~) > 

A3 = P7(P3+P,)(P;+!36’) 1 

A4 = v,(P,+P,)(P;+P;) 

are all non-negative. Here A is, from (F38), simply 

(~42) 

A = sign of p7+yi p +p ‘fY +Y 7 7 1 2 
, 

-y* -P,-Y, 

(Cont. ) 
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= sign of (Y,Y,-P,P;) 

= sign of (AiA4-A2A3) . (F43) 

In view of (F41), let us take A = t 1. and consider the following 

integral 

J(5) = da3da4dcu5 da6da;da;da5’dai 

(A1Q3a5Q3n5 
“+A (Y cy cu’cr’+A a cy a’a’tA cy cy a’~‘) 

23546 34635 44646 
-‘+’ (F44) 

when G is a small positive number. If we scale with respect to the pairs 

(a 3’ Q4) 3 (a 5,~6), (0’ e’), and ((Y;,LY;), then 
3’ 4 1 

J(S) = G-4 da da dcu da dcx’da ‘da’dcu ’ 
0 3 4 5 6 3 4 5 6 

6 (I-a3-a4) 6 (1-(Y5-cz6)6 (1-cr;-043b (i-a;-@;, 

(ACZY ’ 1 3 5Q3a5 
’ t A2(u3a5a~a; +A304@6ff;a; + A4~4a6~;ni) -‘? (F45) 

We can still scale with respect to the pairs (LY 3,@6) or (04,a5), and 

‘@;, 6 m’) or (m’ 4>a;) . These four regions are all the same, so we get 

J(5) * S 
-6 da3da6da;da; d (~-(Y~-cY~) b (f-m;-@:) 

0 

(A$c~~Q; + A2rr3(u; + A (Y ff’ + A (Y a , -2+5 
363 466 ) 

-6 1 
-2 

*5 + (A2-A4)w3 + (A3-A4)~; + (Af-AZ-A3+A4)e3a; 

= 5-6(AfA4-A2A3)-iln[(A,iA4)/(A2A3) I 
. (F46) 
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Finally the substitution of (F46) into (F39) yields 

dpdp’dy 6 (1- .X~-~~‘-~y) 

A&’ 1 ~NY~Y~) - WP7P;) 1 > 
and hence 

p) 
1,1 

*I - & rri sd3(ln s)~ dp,. . . dp7dp;. . . dp;dy,dv, 

~~-~i-~~-~~i~A~D0111n(~~~2) -ln(P7P;)( . 

(F47) 

(F48) 

This is the desired answer for region 1. 

The most peculiar feature of this answer is that it cannot be 

naturally represented in transverse momentum space. This and other 

related questions are studied in Appendix G. 
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APPEND= G 

In this appendix we discuss the important and interesting problem of 

summing over the signature partners of a diagram. Suppose we are given 

a four-particle diagram and one of the important regions of contribution, 

as discussed for example after (F7). Draw the diagram such that each of 

th?eFeynman parameters that appear in the top and bottom lines is small. 

The signature partners are defined to be those three diagrams, together 

with their respective important regions of contributions, that differ from 

the original diagram only in that the connections to the middle segment of 

the top and/or the bottom line are reversed. This is best illustrated by 

an example. Consider the diagram treated in Appendix F with its first 

region of contribution, then we obtain from Fig. 10 the three signature 

partners as shown in Figs. 11-13. Corresponding to the I’,“‘: of the 

preceding appendix, let the corresponding contributions be ‘(20) I 1 It , p-J) 
1, it” 

and Iy”itt. , where t and t’ designate transposing lines respectively 

in the top and bottom lines of the diagram. We are interested in the sum 

I(20) = I(20) + I(20) + I(20) 
l,ls 1,1 t,it 1, it’ 

+ p 
i,itt’ . (Gi) 

Let us first compare Fig. 10 with Fig. 11. If we write down a 

10x10 matrix for the diagram of Fig. 11 in a way similar to (F3), the 

result differs from (F3) in the following ways: First, the (2,tO) element 

is -(Y 3 instead of u3; secondly, the (1,2) element is also -cu3 instead of 
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a3; thirdly, the (4.10) element is nt+e3 instead of (of; fourthly, the (4.4) 

element has an additional +‘~3; fifthly, the (1,4) element has an additional 

+a . 3’ 
and finally the (2,4) and (4,2) elements both have an additional -(Y . 

3 

Let us recall at this point that, for this first region of contribution, the 

variable (Y 3 is scaled twice, first with (of and a2 as given by (F31), and 

again with (Y 4 in the evaluation of J(L) defined by (F44). Therefore an 

additional (Y 3 reduces the size of the integral by at least a factor of 

2 
(In s) . For this reason, a reference to (F15) shows that only the first 

difference listed above is significati.Therefore, the effect of transposing 

lines at the top of the diagrams is to change the sign of a3 . Similarly, 

the effect of transposing at the bottom is to change the sign of ai . 

(7.0) In order to get the high-energy behavior of If It , (20) I(:‘:~ snd Ii ttt, from 

p 
I,1 ’ 

we need only to replace the J(5) of (F44) by, respectively, 

1 

J,(L) = 
I 

dru da da de da’drr’da ‘dcu’ 34563456 
0 

(-A CY a ~‘a’ - 
13535 

A2a3~5~>; + A3~4~6apU; + A4~4~6api +ie) 
-2+5 

, 

Jt, (5) = 
1 

1 G2) 

0 
da3da4da5da6da;da;da;d@; 

(-A1a3@5a3@5 ’ ’ + A a (Y a’(~’ -A (Y CY ~‘a’ + A CY cz cu’a’+ie) -2+5 
23546 34635 44646 

(G3) 
and 

1 

Jtt ’ (5) = da da da da dlu’da’da ‘da ’ 
34563456 

0 
(Cont. ) 
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I . 

(A1Q3e5e3Q5 
-A (Y (Y es’- A~(Y~(Y~cY;u; + A4a4(u6~~a~ + ie)-2+> (G4) 

23546 

But these three integrals can be evaluated by continuing analytically 

(~46) in the A coefficients, and the results are 

Jt(5) y Lm6(-AlA4 + A2A3)-‘ln 
C 

(A1A4)/(A2A3) 
3 

*r -J(5) , 

J,(5) * cm6(-A1A4 + A2A3)-tin 
[. 
(AtA4)/(A2A3)] - -J(5) > 

and 

J ,,,(L)Q L-~(A*A~- 

= J(5) - 2rri cm6(A1A4 - A2A3)-’ . 

The sum is thus 

Js(5) = J(S) + J,(S) + J,.(5) + J,,,(L) 

-. - 2rri cm6(A1A4 - A2A3)-t . 

(G5) 

((35) 

(G7) 

Km 

Note that the right-hand of (G8) is purely imaginary while the right-hand 

side of (F46) is purely real. Since this i changes into -i by complex 

conjugation when A changes sign, we get finally 

o dpdp’dyd (i- zp-Xp’-Zv) At(Do+ie) 
-7-c 

(G9) 

c 

1 
6 -7 

dpdp’dy 6 (1-X:p-cp’-Z~y) AODO . 
Jo 



-7i- FERMILAB-Pub-74/88-THY 

The sum over signature partners is thus much nicer and can be easily 

expressed as an integral in transverse momentum space. Note that both 

(F48) and (GiO) are of the order s -3(ln s)7 . 

Corresponding sums over signature partners for the regions 2, 3, 

and 4 as discussed after (F7) are exactly the same. The signature 

partners, however, do not come from the same diagrams. 
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FIGURE CAPTIONS 

Fig. 1 The $3 Feynman diagrams of Mandelstam. The s channel 

runs horizontally from left to right, and the t channel is 

vertical. 

Fig. 2 Non-Mandelstam diagrams which in $3 are of comparable 

magnitude as the Mandelstam diagrams of the same order. 

Fig. 3 

Fig. 4 

Fig. 5 

The transverse diagrams for 

(a) the 2(n+,)th order Mandelstam diagram, 

(b) the IOth order diagram 1 of Fig. 2(a), 

(c) the i2th order diagrams 1 and 2 of Fig. 2(b) and (c), 

(d) the lZth order diagram 3 of Fig. 2(d). 

The s ++ u crossed diagrams corresponding to 

(a) the Bth order Mandelstam diagram of Fig. l(a), 

(b) the iOth order diagram 1 of Fig. 2(a), 

(c) the 12th order diagram 1 of Fig. 2(b), 

(d) the i2th order diagram 2 of Fig. 2(c) 

(e) the f2th order diagram 3 of Fig. 2(d). 

Four examples of the class of diagrams that are as large 

as the Mandelstam diagrams when s ‘00 

(a) an 18 
th order diagram, 

(b) the lgth order diagram obtained from (a) by s ++ u 

exchange, 



-75- FERMILAB-Pub-74/88-THY 

Fig. 6 

(c) a 20th order diagram, 

(d) the 20th order diagram obtained from (c) by s +-+ u 

exchange. 

A typical transverse diagram of 20 th order. The dotted 

line indicates the cut used to derive the integral equation 

(2. 29). 

Fig. 7 Double Mandelstam diagrams with m rungs in the outer 

ladder and n rungs in the inner ladder. Diagrams c and 

d are obtained from diagrams b and a respectively by 

Fig. 8 

Fig. 9 

Fig. 10 

Fig. 11 

Fig. 12 

The four 12 
th 

order diagrams which are comparable to the 

12th order double Mandelstam diagrams of Fig. 7. 

A 20th order diagram that contributes to Reggeon-Reggeon 

scattering. 

The diagram of Fig. 9 redrawn in a useful fashion. The 

Feynman parameters indicated are used in the calculation 

of Appendix F. 

The diagram obtained from that of Fig. 10 by transposing 

the two inner vertical lines at the top. 

The diagram obtained from that of Fig. 10 by transposing 

the two inner vertical lines at the bottom. 
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Fig. 13 

Fig. 14 

Fig. 15 

Fig. 16 

Fig. 17 

Fig. 18 

The diagram obtained from that of Fig. 10 by transposing 

the inner vertical lines both at the top and at the bottom. 

The transverse diagram for the function j(z). 

The Feynman diagram studied in Appendix B. 

The Feynman diagram studied in Appendix C. 

The Feynman diagram studied in Appendix D. 

The Feynman diagram studied in Appendix E. 



(a) 8th. order (b) IOth. order (c) 12ttr order 



(a) 10th. order 
diagram No.1 

(c> 12th. order 
diagram No. 2 

(b) 12th. order 
diagram No. I 

(d) 12 th. order 
diagram No.3 
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